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Abstract

It is challenging for weakly supervised object detec-
tion network to precisely predict the positions of the ob-
jects, since there are no instance-level category annota-
tions. Most existing methods tend to solve this problem
by using a two-phase learning procedure, i.e., multiple
instance learning detector followed by a fully supervised
learning detector with bounding-box regression. Based on
our observation, this procedure may lead to local minima
for some object categories. In this paper, we propose to
jointly train the two phases in an end-to-end manner to
tackle this problem. Specifically, we design a single network
with both multiple instance learning and bounding-box re-
gression branches that share the same backbone. Mean-
while, a guided attention module using classification loss is
added to the backbone for effectively extracting the implicit
location information in the features. Experimental results
on public datasets show that our method achieves state-of-
the-art performance.

1. Introduction

In recent years, Convolutional Neural Networks (CNN)
approaches have achieved great success in computer vision
field, due to its ability to learn generic visual features that
can be applied in many tasks such as image classification
[20, 31}, [12]], object detection [10, O] and semantic seg-
mentation 2. Fully supervised object detection has
been widely studied and achieved promising results. There
are also plenty of public datasets which provide precise lo-
cation and category annotations of the objects. However,
precise object-level annotations are always expensive in hu-
man resource and huge data volume is required by training
accurate object detection models. In this paper, we focus
on Weakly Supervised Object Detection (WSOD) problem,
which uses only image-level category labels so that signif-
icant cost of preparing training data can be saved. Due to
the lack of accurate annotations, this problem has not been
well handled and the performance is still far from the fully
supervised methods.
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Figure 1: The learning strategy comparison of existing
weakly supervised object detection methods (above the blue
solid line) and our proposed method (below the blue solid
line).

Recent WSOD methods [, [T} [18]) usually follows
a two-phase learning procedure as shown in the top part of
Figure[I] In the first phase, the Multiple Instance Learning
(MIL) [4, 18], 34} [1] like weakly learning pipeline is used,
which trains a MIL detector by using CNN as feature ex-
tractor. In the second phase, a fully supervised detector,
e.g. Fast R-CNN [9] or Faster R-CNN [26], is trained to
further refine object location by using the selected propos-
als of the first phase as supervision. The main functionality
of the second phase is to regress the object locations more
precisely. However, we observed that the two-phase learn-
ing is easy to get stuck into local minima if the selected
proposals of the first phase are too far from real Ground
Truth (GT). As shown in the top part of Figure[I] in some
categories, the MIL detector tends to focus on the local dis-
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Figure 2: Detection results of MIL detector (left part), Fast R-CNN with pseudo GT from MIL detector (middle part) and our
jointly training network (right part) at different training iterations.

criminative parts of the objects, such as the head of a cat,
so that the wrong proposals are used as pseudo GT for the
second phase. In this case, the accurate location of the ob-
ject can hardly be learned in the regression process of the
second phase, as the MIL detector has already over-fitted
seriously to the discriminate parts, as shown in the middle
part of Figure[2]

We further observed that the MIL detector does not se-
lect the most discriminative parts at the beginning of the
training, but gradually over-fits to these parts, as shown in
the left part of Figure[2]

Taking into account the above observations, we pro-
pose to jointly train the MIL detector and the bounding-
box regressor together in an end-to-end manner, as shown
in the bottom part of Figure [I, In this manner, the re-
gressor is able to start to adjust the predicted boxes be-
fore the MIL detector focuses seriously to small discrimi-
native parts, as shown in the right part of Figure[2] Specif-
ically, we use MIL detection scheme as baseline
and integrate fully supervised Rol-based classification and
bounding-box regression branch similar to Fast R-CNN,
which shares the same backbone with MIL detector. MIL
detector is a weakly learning process, which selects object
predictions from the region proposals, e.g. generated by
Selective Search Windows (SSW) [36] method, according
to classification scores. These selected proposals are then
used as the pseudo GT supervision of the classification and
regression branch.

In order to further enhance the localization ability of the
proposed network, we propose to use a guided attention
module using image-level classification loss in the back-
bone. To our best knowledge, the well trained classification
network contains rich object location information. There-
fore, we add this attention branch which is guided by image-
level classification loss. Fully considering the global char-
acteristics of the objects, the attention branch can improve

the discriminative ability of the network as well as detection
accuracy.

It is worth noting that though jointly learning of classi-
fication and boxes regression has already been shown to be
beneficial for fully supervised object detection, for weakly
supervised object detection it is still non-trivial and needs
innovative idea and insight on this task. Although Our
method is conceptually simple in form, it significantly al-
leviates the weak detector over-fitting to discriminate parts
and substantially surpasses previous methods. Our contri-
butions can be summarized as follows.

e We design a single end-to-end weakly supervised ob-
ject detection network that can jointly optimize the re-
gion classification and regression, which boosts per-
formance significantly.

e We design a classification guided attention module to
enhance the localization ability of feature learning,
which also leads to a noteworthy improvement.

e Our proposed network significantly outperforms previ-
ous state-of-the-art weakly supervised object detection
approaches on PASCAL VOC 2007 and 2012.

2. Related Work
2.1. Convolutional Feature Extraction

After the success of using CNNs for image classifica-
tion task[20], a research stream based on CNNs [10]
shows significant improvements in detection performance.
These methods use convolutional layers to extract features
from each region proposal. To speed up the the detection,
SPP-Net [11]] and Fast R-CNN [9]] firstly extract region-
independent feature maps at the full-image level, and then
pool region-wise features via spatial extents of proposals.



2.2. Weakly Supervised Object Detection

Most existing methods formulate weakly-supervised de-
tection as a multiple instance learning problem [1} [32} [13]
18, 22| 27]. These approaches divided training images into
positive and negative parts, where each image is considered
as a bag of candidate object instances. If an image is an-
notated as a positive sample of a specific object class, at
least one proposal instance of the image belongs to this
class. The main task of MIL-based detectors is to learn
the discriminative representation of the object instances and
then select them from positive images to train a detec-
tor. Previous works on applying MIL to WSOD can be
roughly categorized into multi-phase learning approach
[1181 4] 221 38| 1301 142} 43| 141]] and end-to-end learning ap-
proach [[1} 39,1341 19, 133]].

End-to-end learning approaches combine CNNs and
MIL into a unified network to address weakly supervised
object detection task. Diba et al. [3] proposed an end-
to-end cascaded convolutional network to perform weakly
supervised object detection and segmentation in cascaded
manner. Bilen et al. [1] developed a two-stream weakly su-
pervised deep detection network (WSDDN), which selected
the positive samples by aggregating the score of classifi-
cation stream and detection stream. Based on WSDDN,
Kantorov et al. [19] proposed to learn a context-aware
CNN with contrast-based contextual modeling. Also based
on WSDDN, Tang et al. [34] designed an online instance
classifier refinement (OICR) algorithm to alleviate the lo-
cal optimum problem. Tang et al. [33] also proposed Pro-
posal Cluster Learning (PCL) to improve the performance
of OICR. Following the inspiration of [[19] and [5]], Wei et
al. [39] proposed a tight box mining method that leverages
surrounding segmentation context derived from weakly-
supervised segmentation to suppress low quality distracting
candidates and boost the high-quality ones. Recently, Tang
et al. [35] proposed a weakly supervised region proposal
network to generate more precise proposals for detection.
Positive object instances often focus on the most discrimi-
native parts of an object (e.g. the head of a cat, etc.) but
not the whole object, which leads to inferior performance
of weakly supervised detectors.

Multi-phase learning approaches first employ MIL to se-
lect the best object candidate proposals, then use these se-
lected proposals as pseudo GT annotations for learning the
fully supervised object detector such as R-CNN [10] or
Fast(er) R-CNN [9] 26]. Li et al. [22] proposed classi-
fication adaptation to fine-tune the network to collect class
specific object proposals, and detection adaptation was used
to optimize the representations for the target domain by the
confident object candidates. Cinbis et al. [4] proposed a
multi-fold MIL detector by re-labeling proposals and re-
training the object classifier iteratively to prevent the detec-
tor from being locked into wrong object locations. Jie et al.

[18] proposed a self-taught learning approach to progres-
sively harvest high-quality positive instances. Zhang et al.
[43] proposed pseudo ground-truth excavation (PGE) algo-
rithm and pseudo groundtruth adaptation (PGA) algorithm
to refine the pseudo ground-truth obtained by [34]. Wan et
al. [38]] proposed a min-entropy latent model (MELM) and
recurrent learning algorithm for weakly supervised object
detection. Ge et al. [8] proposed to fuse and filter object in-
stances from different techniques and perform pixel label-
ing with uncertainty and they used the resulting pixelwise
labels to generate groundtruth bounding boxes for object
detection and attention maps for multi-label classification.
Zhang et al. [42] proposed a Multi-view Learning Local-
ization Network (ML-LocNet) by incorporating multiview
learning into a two-phase WSOD model. However, multi-
phase learning WSOD is a non-convex optimization prob-
lem, which makes such approaches trapped in local optima.

In this paper, we consider the MIL (positive object can-
didates mining) and regression (object candidates localiza-
tion refinement) problems simultaneously. We follow the
MIL pipeline and combine the two-stream WSDDN [1]]
and OICR/PCL algorithms [34, 33]] to implement our basic
MIL branch and refine the detected boxes with a regression
branch in an online manner.

2.3. Attention Module

Attention modules were first used in the natural lan-
guage processing field and then introduced to the com-
puter vision area. Attention can be seen as a method
of biasing the allocation of available computational re-
sources towards the most informative components of a sig-
nal [15 116,25 21} 137, 24} [14].

The current attention modules can be divided into two
categories: spatial attention and channel-wise attention.
Spatial attention is to assign different weights to different
spatial regions depending on their feature content. It au-
tomatically predicts the weighted heat map to enhance the
relevant features and suppress the irrelevant features during
the training process of a specific task. Spatial attention has
been used in image captioning [40], multi-label classifica-
tion [45]], pose estimation [3|] and so on. Hu et al. [14]
proposed an Squeeze-and-Excitation block which models
channel-wise attention in a computationally efficient man-
ner. In this paper, we use a combination of spatial and
channel-wise attention, and our attention module is guided
by object category.

3. Method

In this section we introduce proposed weakly supervised
object detection network, which consists of three major
components: guided attention module (GAM), MIL branch
and regression branch. The overall architecture of proposed
network is shown in Figure[3] Given an input image, an en-
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Figure 3: Architecture of our proposed network. (1) Generate discriminate features using attention mechanism. (2) Generate
the Rol features from enhanced feature map. (3) MIL branch: Feed the extracted Rol features into a MIL network for
pseudo GT boxes annotation initialization. (4) Regression branch: Feed the extracted Rol features and generated pseudo
GT to the regression branch for Rol classification and regression.

hanced feature map is first extracted from the CNN network
with GAM. Region features generated by ROI pooling are
then sent to MIL branch and regression branch. The ob-
ject locations and categories proposed by MIL branch are
taken as pseudo GT of the regression branch for location
regression and classification. The remainder of this section
discusses the three components in detail.

3.1. Guided Attention Module

First, we describe the conventional spatial neural at-
tention structure. Given a feature map X € RH*XWxD
extracted from a ConvNet, the attention module takes it
as input and outputs a spatial-normalized attention weight
map A € RF*W via a 1x1 convolutional layer. Atten-
tion map is then multiplied to X to get attended feature
X, € REXWXD X is added to X to get the enhanced
feature map X. After that, X is fed to subsequent modules.
Attention map A acts as a spatial regularizer to enhance the
relevant regions and suppress the non-relevant regions for
feature X.

Formally, attention module consists of a convolutional
layer, a non-linear activation layer and a spatial normaliza-
tion as follows:

Zij = F (WTXZ‘,]‘ + b) 5 (1)
Zi j
Qij == 2
! Zi,j Zij

where F' is non-linear activation function. w and b are the
parameters of the attention module, which is a 1 x 1 con-
volutional layer. The attended feature X; ; can be calculated

by:
)A(Lj = (1 + ai,j)xi,j- (3)

The conventional attention map is class-agnostic. We
hope it can learn some foreground/background information
to help figure out the position of the objects, because it has
been proved that CNNs are not only effective at predicting
the class label of an image, but also localizing the image
regions relevant to this label [44].

We add the classification loss to guide the learning of
the attention weights. To achieve this, we expand spa-
tial attention to both spatial and channel attention. Specif-
ically, attention map are changed from A € R7*W (o
A € REXWXD " The attention module can be formalized
as:

2C .
. = — W (3)

= 1+ exp (—zf,j)’

where c denotes the value of the c-th channel. The attended
feature ﬁf ; can be calculated by:
X; ;= (1+af;)x; ;. (6)
To introduce classification supervision to attention
weights learning, attention map A is also fed to another con-
volutional layer and a Global Average Pooling (GAP) layer
to get the classification score vector. Then the attention map
can be supervised by the standard multi-label classification
loss. The enhanced feature map X is fed to subsequent com-
ponents for detection.



Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
MIL 56.2 62.1 394 21.8 103 63.6 60.6 31.8 248 459 353 24.1 36.7 633 13.1 231 394 49.1 647 603 | 41.3
MIL+GAM 552 625 426 23.0 127 662 62.0 392 26.1 489 377 26.1 453 645 12.8 244 423 464 659 624|433
MIL+FRCN 60.2 65.0 509 249 119 71.6 68.0 346 272 612 408 17.6 47.1 65.6 13.0 228 51.0 57.6 66.5 60.5| 459
MIL+REG 56.5 634 388 283 153 682 66.6 68.0 237 516 46.0 324 538 639 12.1 235 472 563 652 649|473
MIL+GAM+REG | 552 66.5 40.1 31.1 169 698 643 67.8 27.8 529 47.0 33.0 60.8 644 13.8 260 44.0 557 689 655 48.6
Table 1: Ablation study: AP performance (%) on PASCAL VOC 2007 test
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mean
MIL 825 765 61.0 473 302 80.7 824 448 42.1 781 452 328 57.1 89.6 16.6 579 732 61.8 79.1 73.5| 60.6
MIL+GAM 82.1 784 643 489 324 812 829 485 434 795 437 349 619 89.2 16.6 575 71.1 562 78.7 774| 614
MIL+FRCN 83.8 81.2 652 484 344 843 846 494 448 829 487 377 670 900 214 60.1 763 664 825 80.6| 64.5
MIL+REG 82.1 792 61.6 527 332 827 858 773 392 822 475 423 752 920 193 58,6 794 656 77.2 839 658
MIL+GAM+REG | 81.7 81.2 589 543 37.8 832 86.2 77.0 42.1 83.6 513 449 782 90.8 205 568 742 66.1 81.0 86.0| 66.8
Table 2: Ablation study: CorLoc performance (%) on PASCAL VOC 2007 trainval
3.2. MIL Branch adopt the OICR [34] and its upgraded version Proposal

We only have image-level labels indicating whether an
object category appears. To train a standard object detector
with regression, it is necessary to mine instance-level su-
pervision such as bounding-box annotations. Therefore, we
need to introduce a MIL branch to initialize the pseudo GT
annotations. There are a couple of possible choices such as
[LL, 4} 134]). We choose to adopt OICR network [34] which
is based on WSDDN [1]] for its effectiveness and end-to-
end training. WSDNN employed a two streams network:
the classification and detection data streams. By aggre-
gating these two streams, instance-level predictions can be
achieved.

Specifically, given an image I with only image-level la-
bel Y = [y1,¥2, ..., yc] € REXL, where y. = 1 or 0 indi-
cates the presence or absence of an object class c. For each
input image I, the object proposals R = (R1, Ra, ..., Ry)
are generated by the selective search windows method [36].
The features of each proposal are extracted through a Con-
vNet pre-trained on ImageNet [28] and Rol Pooling, then
are branched into two streams to produce two matrices
x5 xdet ¢ RE*IRI by two FC layers, where |R| denotes
the number of proposals and C' denotes the number of im-
age classes. These two matrices are passed through a soft-
max layer with different dimensions and the outputs are two
matrices with the same shape: o(x%*) and o (x°*).

After that, the scores of all proposals are generated by
element-wise product x® = o(x%!) ® o(x*). Finally,
the c-th class prediction score at the image-level can be
obtained by summing up the scores over all proposals:

Z\RI

Durmg the traming stage, the loss function can be for-
mulated as follows:

(1 —ye)log(1 —pe)}.

C
Lo = — Z{yc 10gpc + @)
c=1

Since the performance of WSDDN is unsatisfactory, we

Cluster Learning (PCL) [33] to refine the proposal classi-
fication results of WSDDN.

After several times classifier refinement, the classifier
tends to select the tight boxes as positive instances, which
can be used as pseudo GT annotations for our online boxes
regressor.

3.3. Multi-Task Branch

After pseudo GT annotations are generated, a multi-task
branch can operate fully supervised classification and re-
gression as Fast R-CNN [9]]. The detection branch has two
sibling branches. The first branch predicts a discrete prob-
ability distribution (per Rol), p € R(E+TDX1 over C+1
categories, which is computed by a softmax over the C+1
outputs of a FC layer. The second sibling branch outputs
bounding-box regression offsets, t = (tg,t;, 5, ;) for
each of the C' object classes, indexed by c.

Since we get the instance annotations from MIL branch
as introduced in Section each Rol now has a GT
bounding-box regression target v and GT classification tar-
get u. We use a multi-task loss L4, of all labeled Rols for
classification and bounding-box regression:

£det = £cls + )\‘clocy ®)
where L is classification loss, and £;,. is regression loss.
) controls the balance between two losses. For £;,., smooth
L+ loss is used. For L., since the pseudo GT annotations
are noisy, we add a weight w” with respect to Rol 7:

|IR| C+1

Z > w'ullog pl,

r=1 c=1

€))

cls -

|B]

where |R| is the number of proposals. The weight w” is
calculated following the weights calculation method in [34]]
when refining the classifiers.



Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
WSDDNII] 39.4 50.1 315 163 12.6 645 428 42.6 10.1 357 249 382 344 556 94 147 302 40.7 547 469|348
ContextLocNet[19] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 341 1.7 33.1 492 420 473 566 153 12.8 24.8 489 444 478|363
OICR[34] 580 624 31.1 194 13.0 651 62.2 284 248 447 30.6 253 378 655 157 241 41.7 469 643 62.6|41.2
Self-taught([18] 522 47.1 350 267 154 613 66.0 543 3.0 53.6 247 43.6 484 658 6.6 188 51.9 43.6 53.6 624|417
WCCNI3] 495 60.6 38.6 292 162 70.8 56.9 425 109 44.1 299 422 479 641 138 235 459 54.1 60.8 54.5| 428
TS2C[39] 59.3 57.5 437 273 135 639 61.7 599 24.1 469 36.7 456 399 626 103 23.6 41.7 524 587 56.6|44.3
WSRPN[35] 579 705 37.8 57 21.0 66.1 69.2 594 34 57.1 573 352 642 686 328 286 50.8 49.5 41.1 30.0|453
PCL[33] 544 69.0 393 192 157 629 644 300 25.1 52.5 444 19.6 393 677 17.8 229 46.6 57.5 58.6 63.0|43.5
MIL-OICR+GAM+REG(Ours) [ 552 66.5 40.1 31.1 169 69.8 64.3 67.8 27.8 529 47.0 33.0 608 644 138 260 440 557 689 655 48.6
MIL-PCL+GAM+REG(Ours) |57.6 70.8 50.7 283 272 725 69.1 65.0 269 645 474 477 535 669 137 293 56.0 549 63.4 652|515
PDA[22] 545 474 413 208 17.7 519 63.5 46.1 21.8 57.1 22.1 344 505 618 162 299 407 159 553 40.2|39.5
WSDDN-Ens. [1]] 46.4 583 355 259 140 66.7 53.0 392 89 41.8 266 38.6 447 590 108 173 40.7 49.6 569 50.8|39.3
OICR-Ens.+FRCNN|[34] 65.5 67.2 472 21.6 22.1 68.0 68.5 359 57 63.1 495 303 647 66.1 13.0 256 50.0 57.1 60.2 59.0| 47.0
WCCN+FRCNNI3] - - - - - - - - - - - - - - - - - - - - | 431
MELM[8] 55.6 66.9 342 29.1 164 68.8 68.1 43.0 250 656 453 532 49.6 686 2.0 254 525 56.8 62.1 57.1|473
GAL-fWSD512(30] 584 63.8 458 24.0 227 67.7 657 589 150 58.1 47.0 53.7 238 643 362 223 467 503 70.8 55.1|475
ZLDN[4I] 554 685 50.1 168 20.8 62.7 66.8 56.5 2.1 57.8 47.5 40.1 69.7 682 21.6 272 534 56.1 52.5 58.2|47.6
TS2C+FRCNN([39] - - - - - - - - - - - - - - - - - - - - | 480
PCL-Ens.+FRCNN[33] 632 69.9 479 226 273 710 69.1 49.6 12.0 60.1 515 373 633 639 158 236 488 553 61.2 62.1|488
ML-LocNet-L+[42] 60.8 70.6 47.8 302 248 649 684 579 11.0 513 555 48.1 687 69.5 283 252 51.3 56.5 60.0 43.1|49.7
WSRPN-Ens.+FRCNN[35] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 585 10.0 66.7 60.6 347 757 703 257 265 554 564 555 549|504
Multi-Evidencel[8]] 643 68.0 562 364 23.1 685 672 649 7.1 541 470 57.0 693 654 208 232 50.7 59.6 652 57.0|51.2
W2F+RPN+FSD2[43] 63.5 70.1 50.5 319 144 720 67.8 737 233 534 494 659 572 672 276 238 51.8 587 64.0 623|524
Ours-Ens. 59.8 72.8 544 356 302 744 70.6 745 277 68.0 51.7 463 637 686 148 278 549 609 65.1 674|545

Table 3: Comparison of AP performance (%) on PASCAL VOC 2007 test. The upper part shows results by single end-to-end
model. The lower part shows results by multi-phase approaches or ensemble model.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
ContextLocNet[19] 64.0 549 364 8.1 126 53.1 405 284 6.6 353 344 49.1 426 624 198 152 27.0 33.1 33.0 500|353
OICR[34] 67.7 61.2 41.5 256 222 54.6 49.7 254 199 47.0 18.1 260 389 677 2.0 22.6 41.1 343 379 553|379
Self-taught[18] 60.8 54.2 34.1 149 13.1 543 534 586 3.7 53.1 83 434 498 692 41 175 438 256 550 50.1|383
WCCNI3] - - - - . - - - - - - - - - - - |379
TS2C[39] 674 57.0 37.7 237 152 569 49.1 648 151 394 193 484 445 672 21 233 351 402 46.6 458|400
WSRPN[35] - - - - - - - - - - - - - - - - - - - - | 408
PCL[33] 582 66.0 41.8 248 272 557 552 285 16.6 51.0 17.5 28.6 49.7 705 7.1 257 475 36.6 44.1 59.2|40.6
MIL-OICR+GAM+REG(Ours) | 64.7 66.3 46.8 285 284 59.8 58.6 70.9 13.8 550 157 60.5 639 69.2 87 238 447 527 41.5 62.6| 46.8
MIL-PCL+GAM+REG(Ours) |60.4 68.6 51.4 22.0 259 494 584 62.1 145 588 246 604 643 703 94 260 47.7 455 36.7 55.8| 456
MELM]8] - - - - - - - - - - - - - - - - - - - - | 424
OICR-Ens.+FRCNN{[34] - - o - - .. - - - - - - - - |45
ZLDN[41] 543 63.7 43.1 169 21.5 57.8 604 509 1.2 51.5 444 36.6 636 593 128 256 47.8 472 489 50.6|429
GAL-fWSD512[30] 649 56.8 47.0 18.1 222 60.0 51.7 60.7 129 43.1 23.6 585 52.1 669 395 19.0 39.6 36.1 62.7 27.4|43.1
ML-LocNet-L+[42] 539 604 404 233 187 587 63.3 525 133 49.1 468 335 61.0 658 21.3 229 46.8 48.1 52.6 404 |43.6
TS2C+FRCNN[39] ..o . . - - - - . - . - - - - |440
PCL-Ens.+FRCNNJ33] 69.0 71.3 56.1 303 273 552 57.6 30.1 8.6 56.6 184 439 646 718 75 230 460 44.1 42.6 58.8|442
WSRPN-Ens.+FRCNN[35]| ..o . - . - - - . - . . - - - 457
W2F+RPN+FSD2[43]| 73.0 69.4 458 30.0 28.7 588 58.6 56.7 20.5 58.9 10.0 69.5 67.0 734 74 246 482 46.8 50.7 58.0|47.8
Ours-Ens. 66.8 71.1 56.0 284 342 562 603 638 173 61.3 248 59.7 674 73.6 120 30.0 52.7 47.1 459 61.5|49.5

Table 4: Comparison of AP performance (%) on PASCAL VOC 2012 test. The upper part shows results by single end-to-end
model. The lower part shows results by multi-phase approaches or ensemble model.

The overall network is trained by optimizing the follow-
ing composite loss functions from the four components us-
ing stochastic gradient descent:

L= Eimgcls + AC?ﬂil + Erefine + £deta (10)

where L;,q.,, is the multi-label classification loss of GAM;
L,a is the multi-label classification loss of WSDDN;
Lyefine is the classifier refinement loss; and Lge; is multi-
task loss of the detection sub-network.

4. Experiments

In this section, we first introduce the evaluation datasets
and the implementation details of our approach. Then we
explore the contributions of each proposed module by the
ablation experiments. Finally, we compare the performance
of our method with the-state-of-the-art methods.

4.1. Datasets and Evaluation Metrics

We evaluate our method on the popular PASCAL VOC
2007 and 2012 datasets [[6]] which have 9963 and 22531 im-



Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
WSDDNI1] 65.1 58.8 585 33.1 398 683 60.2 59.6 348 645 30.5 43.0 568 824 255 416 61.5 559 659 63.7|53.5
ContextLocNet[19] 833 68.6 547 234 183 73.6 74.1 541 8.6 651 47.1 595 670 835 353 399 67.0 49.7 63.5 65.2|55.1
OICR[34] 81.7 80.4 487 49.5 32.8 81.7 854 40.1 40.6 79.5 357 337 605 888 218 579 763 599 753 81.4]60.6
Self-taught([18] 727 553 53.0 27.8 352 68.6 81.9 60.7 11.6 71.6 29.7 543 643 882 222 537 722 526 689 755|56.1
WCCNI3] 839 72.8 645 44.1 40.1 657 825 589 33.7 725 256 537 674 774 268 49.1 68.1 279 645 557 56.7
TS2C[39] 842 74.1 613 52.1 321 76.7 829 66.6 423 70.6 39.5 57.0 612 884 93 546 722 60.0 65.0 70.3|61.0
WSRPN[35] 715 81.2 553 19.7 443 802 86.6 69.5 10.1 87.7 684 52.1 844 916 574 634 773 581 57.0 53.8|63.8
PCL[33] 79.6 855 622 479 37.0 838 834 430 383 80.I 50.6 309 578 908 270 582 753 68.5 757 78.9|62.7
MIL-OICR+GAM+REG(Ours) | 81.7 81.2 589 543 37.8 832 862 77.0 42.1 83.6 513 449 782 908 205 568 742 66.1 81.0 86.0| 66.8
MIL-PCL+GAM+REG(Ours) |80.0 83.9 74.2 532 485 827 862 69.5 39.3 829 53.6 614 724 912 224 575 835 648 757 77.1| 68.0
PDA [22] 782 67.1 61.8 38.1 36.1 61.8 78.8 552 285 68.8 185 49.2 64.1 735 214 474 64.6 223 60.9 523|524
WSDDN-Ens. [1]] 689 68.7 652 425 40.6 726 752 537 29.7 68.1 335 456 659 86.1 275 449 760 624 663 66.8|58.0
OICR-Ens.+FRCNN [34] 85.8 827 62.8 452 435 84.8 87.0 46.8 157 822 51.0 456 837 912 222 597 753 651 768 78.1| 643
GAL-fWSD [30] - - - - - - - - - - - - - - - - - - - - | 672
ZLDN [41] 80.3 76.5 64.2 409 46.7 78.0 843 57.6 21.1 69.5 28.0 46.8 70.7 894 419 547 763 61.1 763 652|615
PCL-Ens.+FRCNN [33] 83.8 85.1 655 43.1 50.8 83.2 853 59.3 285 822 574 50.7 850 92.0 279 542 722 659 77.6 82.1|66.6
ML-LocNet-L+[42] 88.1 855 71.2 494 574 90.7 77.6 53.5 42.6 79.6 34.1 69.1 81.7 919 354 646 793 643 793 69.6| 68.2
WSRPN-Ens.+FRCNN [35] 83.8 82.7 60.7 35.1 53.8 82.7 88.6 674 22.0 86.3 68.8 509 90.8 93.6 440 612 825 659 71.1 76.7|68.4
W2F+RPN+FSD2 [43] 854 87.5 62.5 543 355 853 86.6 823 39.7 829 494 765 748 90.0 468 539 845 683 79.1 79.9|70.3
Ours-Ens. 83.3 85.5 68.8 56.9 49.6 84.3 87.0 83.1 442 86.3 555 544 81.6 928 228 604 814 702 814 814]70.6

Table 5: Comparison of correct localization (CorLoc) (%) on PASCAL VOC 2007 trainval. The upper part shows results by
single end-to-end model. The lower part shows results by multi-phase approaches or ensemble model.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
ContextLocNet[[19] 78.3 70.8 52.5 347 36.6 80.0 58.7 38.6 27.7 71.2 323 487 762 774 160 484 69.9 475 669 629 | 54.8
OICR([34] 862 842 68.7 554 465 828 749 322 467 82.8 429 41.0 68.1 89.6 92 539 810 529 595 832|62.1
Self-taught[ 18] 82.4 68.1 545 389 359 847 73.1 48 17.1 783 225 57.0 708 86.6 18.7 49.7 80.7 453 70.1 773|588
TS2C[39] 79.1 839 64.6 50.6 37.8 87.4 740 741 404 80.6 42.6 53.6 66.5 888 188 549 804 604 70.7 79.3| 64.4
WSRPN[35] - - - - - - - - - - - - - - - - - - - - | 649
PCL[33] 77.2 83.0 62.1 550 493 83.0 758 37.7 43:2 81.6 46:8 429 733 903 214 56.7 844 550 629 825|632
MIL-OICR+GAM+REG(Ours) | 82.4 83.7 72.4 579 529 86.5 782 78.6 40.1 86.4 379 679 876 905 256 539 850 719 662 84.7|69.5
MIL-PCL+GAM+REG(Ours) |80.2 83.0 73.1 51.6 483 79.8 76.6 70.3 44.1 87.7 509 703 847 924 285 593 834 64.6 63.8 81.2| 687
OICR-Ens.+FRCNN [34] - - - - - - - - - - - - - - - - - - - - 1656
ZLDN [41] 80.3 76.5 64.2 409 46.7 78.0 843 57.6 21.1 69.5 28.0 46.8 70.7 894 419 547 763 61.1 763 652|615
GAL-fWSD512 [30] - - - - - - - - - - - - - - - - - - - - 1672
ML-LocNet-L+[42] 88.1 855 71.2 494 574 90.7 77.6 53.5 426 79.6 34.1 69.1 81.7 919 354 646 793 643 79.3 69.6| 68.2
PCL-Ens.+FRCNN [33] 86.7 86.7 74.8 56.8 53.8 842 80.1 42.0 364 86.7 46.5 54.1 87.0 927 246 620 862 632 70.9 84.2]| 68.0
WSRPN-Ens.+FRCNN [35] - - - - - - - - - - - - - - - - - - - - 1693
W2F+RPN+FSD?2 [43] 88.8 85.8 649 56.0 543 88.1 79.1 67.8 46,5 86.1 26.7 77.7 872 89.7 285 569 856 637 71.3 83.0| 69.4
Ours-Ens. 82.0 85.1 73.7 56.6 53.0 858 79.2 80.9 46.0 87.7 462 727 82 91.6 260 60.6 837 722 67.8 850|712

Table 6: Comparison of correct localization (CorLoc) (%) on PASCAL VOC 2012 trainval. The upper part shows results by
single end-to-end model. The lower part shows results by multi-phase approaches or ensemble model.

ages for 20 object classes, respectively. These two datasets
are split into train, validation, and test sets. We use the
trainval set (5011 images for 2007 and 11540 for 2012) for
training. As we focus on weakly supervised detection, only
image-level labels are utilized during training. Average Pre-
cision (AP) and the mean of AP (mAP) are taken as the
evaluation metrics to test our model on the testing set. Cor-
rect localization (CorLoc) is also used to evaluate our model
on the trainval set to measure the localization accuracy [1].
Both metrics are evaluated on the PASCAL criteria, i.e., [oU
> 0.5 between ground truths boxes and predicted boxes.

4.2. Implementation Details

We use the object proposals generated by selective
search windows [36] and adopt VGG16 [31]] pre-trained on
ImageNet [28] as the backbone of our proposed network.

For the newly added layers, the parameters are randomly
initialized with a Gaussian distribution N'(, 6)(pn = 0,8 =
0.01) and 10 times learning rate. During training, we adopt
a mini-batch size of 2 images, and set the learning rate to
0.001 for the first 40K iterations and then decrease it to
0.0001 in the following 30K iterations. The momentum and
weight decay are set to 0.9 and 0.0005, respectively. We use
five image scales , i.e., {480, 576, 688,864, 1200}, and hor-
izontal flips for both training and testing data augmentation.
During testing, we use the mean output of the regression
branch, including classificaiton scores and bounding boxes,
as the final results. Our experiments are based on the deep
learning framework of Caffe [17)]. All of the experiments
run on NVIDIA GTX 1080Ti GPUs.



Figure 4: Qualitative detection results of our method and the baseline (OICR+FRCN).The results of baseline are shown in
the odd columns. The results of our method are shown in even columns.

4.3. Ablation Studies

We conduct ablation experiments on PASCAL VOC
2007 to prove the effectiveness of our proposed network.
We validate the contribution of each component including
GAM and regression branch.

4.3.1 Baseline

The baseline is the MIL detector without GAM and regres-
sion branch that we introduced in Section [3.1] which is the
same as OICR [34]. We re-run the experiment and get a
slightly higher result of 41.3% mAP (41.2% mAP in [34]).

4.3.2 Guided Attention Module

To verify the effect of GAM, we conduct experiments
with and w/o GAM. We denote the network with GAM
as MIL+GAM, which does not include regression branch.
From Table [I] we can conclude that GAM does help the
detector learn better features and improves the accuracy of
MIL detector by 2.0%.

4.3.3 Joint Optimization

To optimize proposal classification and regression jointly,
we propose to use bounding-box regression in an online
manner together with MIL detection. To verify the effect
of online regression, we conduct control experiments under
two setting: 1) our joint optimization of MIL detector and
regressor, which we denote as MIL+REG; 2) we train a
MIL detector first, then use the pseudo GT from the MIL
detector to train a fully supervised Fast R-CNN [9]. We

denote this setting as MIL+FRCN. The experimental re-
sults are summarized in Table[I] From the results, we can
see the performance of our MIL+REG is much higher than
MIL+FRCN. We attribute the improvements to joint op-
timization. Separate optimization of MIL detector and re-
gressor result in sub-optimal results. It easily gets stuck in
local minima if the pseudo GTs are not accurate. This can
be seen from the results of the object category cat and dog.
The two object classes are much easier to over-fit to the dis-
criminate parts in the MIL detection. Our joint optimization
strategy can alleviate this problem as shown in Figure
More visualization results are shown in the supplementary
file. We also carry the exploration study on the CorL.oc met-
ric, as reported in Table@ From these results, we can draw
the same conclusion. In Figure[5] we show more qualitative
results in the same way to supplement Figure 2]

4.4. Comparison with State-of-the-Art

To fully compare with other methods, we report the re-
sults for both “single end-to-end network” and “multi-
phase approaches or ensemble model”. The results on
VOC 2007 and VOC 2012 are shown in Table [3| Table
[} Table [4] and Table [f] From the tables, we can see that
our method achieves the highest performance, outperform-
ing the state-of-the-arts for both cases. It is worth noting
that our single model results are even much better than
the ensemble models results of most methods which en-
semble the results of multiple CNN networks. For exam-
ple, compared with OICR [34]], which we use as baseline,
our single model outperforms the ensemble models of
OICR significantly while keeping much lower complex-
ity (47.0% mAP Versus 48.6% mAP; 60.6% CorLoc Versus
66.8% CorLoc on VOC 2007). In Figure @] we also illus-



trate some detection results by our network as compared to
those by our baseline method, i.e., OICR+FRCN. It can be
concluded from the illustration that our joint training strat-
egy significantly alleviates the detector focusing on the most
discriminative parts.

4.5. Discussion

C-WSL [7] also explored bounding box regression in
weakly supervised object detection network. We list the
relationship and some differences below. Relationship: We
both use bounding box regression in an online manner.
However, there are key differences in network architec-
ture between the two, which lead to the performance of
C-WSL being much lower than ours, even though they use
additional object count labels. Differences: The network
structure is different. We use bounding box regression
after several box classifier refinements and use only once.
C-WSL [7]] uses a box regressor together with each box
classifier refinement after the MIL branch. Their structure
brings two problems. First, a single MIL branch’s classifi-
cation performance is very poor, it is not wise to directly
use the box regressor to refine the box location after the
MIL branch. The second problem is that the bounding box
regression is used in a cascade manner for each refinement
without re-extracting features for the Rols. Specifically, the
subsequent box regression branch should take the refined
box locations from the previous box regression branch
to update Rols and re-extracting Rols features for the
classifier and regressor. Because of the above problems,
after deducting the improvement of extra label information,
their network only improves 1.5% compared with OICR
as shown in [7] while our network has increased by 6%
compared with OICR (Please note that we use the same set
of code released by the authors of OICR). In addition, [7]
does not solve the problem of local minima. On the two
categories that most affected by the local minima problem,
[7] drops 4% in the dog category and improves 3% in the
cat category while our method improves 16.3% and 38.6%
respectively.

5. Conclusion

In this paper, we present a novel framework for weakly
supervised object detection. Different from traditional ap-
proaches in this field, our method jointly optimize the MIL
detection and regression in an end-to-end manner. Mean-
while, a guided attention module is also added for better
feature learning. Experiments show substantial and consis-
tent improvements by our method. Our learning algorithm
is potential to be applied in many other weakly supervised
visual learning tasks.
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Figure 5: Detection results of MIL detector (left part), Fast R-CNN with pseudo GT from MIL detector (middle part) and our
jointly training network (right part) at different training iterations .



